Crime Prediction and Classification in San Francisco City

Addarsh Chandrasekar, Abhilash Sunder Raj and Poorna Kumar

Abstract—To be better prepared to respond to criminal activity, it is important to understand patterns in crime. In our project, we analyze crime data from the city of San Francisco, drawn from a publicly available dataset. At the outset, the task is to predict which category of crime is most likely to occur given a time and place in San Francisco. To overcome the limitations imposed by our limited set of features, we enrich our data by adding information from the United States Census to it. We also attempt to make our classification task more meaningful by merging multiple classes into larger classes. Finally, we report and reflect on our results with different classifiers, and dwell on avenues for future work.

I. INTRODUCTION

Many important questions in public safety and protection relate to crime, and a better understanding of crime is beneficial in multiple ways: it can lead to targeted and sensitive practices by law enforcement authorities to mitigate crime, and more concerted efforts by citizens and authorities to create healthy neighborhood environments. With the advent of the Big Data era and the availability of fast, efficient algorithms for data analysis, understanding patterns in crime from data is an active and growing field of research.

In our project, we use spatio-temporal and demographic data to predict which category of crime is most likely to have occurred, given a time, place and the demographics of the place. The inputs to our algorithms are time (hour, day, month, year), place (latitude, longitude, and police district), and demographic data (population, median income, minority population, and number of families, which we get from the United States Census). The output is the category of crime that is likely to have occurred. We try out multiple classification algorithms, such as Naive Bayes, Support Vector Machines, Gradient Boosted Decision Trees, and Random Forests. We also perform multiple classification tasks - we first try to predict which of 39 classes of crimes are likely to have occurred, and later try to differentiate between blue- and white-collar crimes, as well as violent and non-violent crimes.

II. RELATED WORK

Much of the current work is focused in two major directions: (i) predicting surges and hotspots of crime, and (ii) understanding patterns of criminal behavior that could help in solving criminal investigations.

Important contributions towards the former include [1] by Bogomolov et al, who try to predict whether any particular area in London will be a crime hotspot or not, using anonymized behavioural data from mobile networks as well as demographic data. In [2], Chung-Hsien Yu et al use classification techniques to classify neighbourhoods in a city as hotspots of residential burglary, using a variety of classification algorithms such as Support Vector Machines, Naive Bayes, and Neural Networks. (More work on the usefulness of Support Vector Machines for hotspot detection can be found in [3]). Toole et al demonstrated in [4], by analyzing crime records for the city of Philadelphia, that significant spatio-temporal correlations exist in crime data, and they were able to identify clusters of neighbourhoods whose crime rates were affected simultaneously by external forces.

They also noted significant correlations in crime across weekly time scales.

Towards the second objective of understanding patterns of criminal behaviour, significant contributions have been made by Tong Wang et al in [5], in finding patterns in criminal activity and identifying individuals or groups of individuals who might have committed particular crimes. Their approach was to identify a common modus operandi across crimes, which could then be linked to groups or individuals who might commit the crime. For this, the authors proposed a new machine learning method called Series Finder, which was trained to recognize patterns in housebreak incidents in Cambridge, Massachusetts.

Our approach shares certain similarities with some of the work described above, in that we use spatio-temporal and demographic information to discover which types of crimes are likely to have occurred. However, we are notably different in that, given the data, we seek to predict which category of crime is most likely to occur, and we are hence concerned principally with understanding the differences between different types of crime, which is relatively unexplored territory.

III. OUR DATASET

Our dataset is a publicly available dataset that we obtained from Kaggle, which has information about 878,049 crimes that took place in San Francisco city over a span of nearly twelve years. Each crime is labeled as belonging to one of 39 categories.

A. Features

Every entry in our training data set is about a particular crime, and contains the following information:

- **Date** and **timestamp** of the incident.
- **Day of the week** that the crime occurred.
- **Name of the Police Department District**.
- **Address**: the approximate street address of the crime incident.
- **Latitude**.
- **Longitude**.
- **Category**: category of the crime incident. This is the target variable.
- **Description**: a brief note describing any pertinent details of the crime. (This was not used as a feature in our classifiers.)
- **Resolution**: whether the crime was resolved (with the perpetrator being, say, arrested or booked) or not. (This was also not used as a feature in our classifiers.)

<table>
<thead>
<tr>
<th>Dates</th>
<th>Category</th>
<th>Description</th>
<th>District</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-05-2015</td>
<td>WARRANTS</td>
<td>WARRANTS</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>TRAFFIC VIOLATION</td>
<td>TRAFFIC VIOLATION</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>OTHER OFFENSES</td>
<td>TRAFFIC VIOLATION</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>THEFT</td>
<td>TRAFFIC VIOLATION</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>BURGLARY</td>
<td>TRAFFIC VIOLATION</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>Larceny</td>
<td>JUSTICE THEFT</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>Larceny</td>
<td>JUSTICE THEFT</td>
<td>NORTHERN</td>
</tr>
<tr>
<td>13-05-2015</td>
<td>Larceny</td>
<td>JUSTICE THEFT</td>
<td>NORTHERN</td>
</tr>
</tbody>
</table>
we proceeded to attack with an assortment of classification specific ways we went ahead with this were: therefore be collapsed into smaller classes for better prediction. The labels were too fine-grained, and we realized that several 39, in the original dataset was too high for accurate prediction. D. Collapsing Crime Categories 19. with our dataset using the location coordinates of the crime in addition of such information could improve our performance at a neighbourhood, racial diversity and so on. We felt that the This included demographic data such as mean income level of features that we scraped from the United States Census data. Following these preprocessing steps, we ran some out-of-the-box learning algorithms as a part of our initial exploratory steps. Our new feature set consisted of 7 features, all of which were now numeric in nature. C. Feature Enrichment As we plunged into solving our classification problem, we felt that our feature set was not adequate enough in terms of the information it contained to predict crime. In order to improve our feature set, we augmented our dataset with additional features that we scraped from the United States Census data. This included demographic data such as mean income level of a neighbourhood, racial diversity and so on. We felt that the addition of such information could improve our performance at the task of crime prediction. The census dataset was matched with our dataset using the location coordinates of the crime in our original dataset, and increased our number of features to 19. D. Collapsing Crime Categories We also felt that the number of output classification labels, i.e. 39, in the original dataset was too high for accurate prediction. The labels were too fine-grained, and we realized that several of these crime categories were similar to one another, and could therefore be collapsed into smaller classes for better prediction. Further, such collapsing could be done in several ways. Two specific ways we went ahead with this were:

- Blue Collar Crimes vs White Collar Crimes: Blue Collar Crimes included crimes such as Larceny, Arson and Burglary while White Collar crimes included crimes such as Fraud, Forgery and Extortion.
- Violent vs Non-Violent Crimes: Violent crimes included crimes such as Assault, Arson and Prostitution while Non-Violent crimes included crimes such as Traffic Violations and Trespassing.

IV. METHODS

After the preprocessing described in the previous sections, we had three different classifications problems to solve, which we proceeded to attack with an assortment of classification algorithms. The following sections explain the models we used in detail.

A. Naive Bayes As part of our initial exploratory analysis, we implemented a Naive Bayes classifier based on a multi-variate event model with Laplace smoothing. This is a multi-class classification problem: the target variable Y (crime category) can be one of 39 classes, represented by numbers from 1 to 39. Therefore, ϕ_y was modeled as a multinomial distribution.

$$Y \in \{1, 2, \ldots, 39\}$$

$$Y \sim \phi_y \text{(Multinomial)}$$

The latitude and longitude data were not used for classification, and all the remaining features are categorical variables. Thus, our feature vector, X, is a 7-dimensional vector. Each of the features takes a range of values: concretely, Month $\in \{1, 2, \ldots, 12\}$, Day of Week $\in \{1, 2, \ldots, 7\}$, and so on. Therefore, each feature is modeled by a multinomial distribution:

$$X_i \in \{1, 2, \ldots, k_i\}$$

$$X_i | \{Y = j\} \sim \phi_{yi} \text{(Multinomial)}$$

Assuming that there are m training examples, the parameters $\{\phi_y, \phi_{yi} \}$ are estimated using the following (Laplace-smoothed) equations:

$$\phi_y(j) = P\{Y = j\} = \frac{\sum_{i=1}^{m} 1\{X^{(i)} = j\} + 1}{m + 39}$$

$$\phi_{yi}(k) = P\{X = k | Y = l\} = \frac{\sum_{i=1}^{m} 1\{Y^{(i)} = l\} + 1}{\sum_{i=1}^{m} 1\{y^{(i)} = l\} + k_j}$$

B. Random Forests Random Forests is a very popular ensemble learning method which builds a number of classifiers on the training data and combines all their outputs to make the best predictions on the test data. Thus, the Random Forests algorithm is a variance minimizing algorithm that uses randomness when making split decision to help avoid overfitting on the training data.

A random forests classifier is an ensemble classifier, which aggregates a family of classifiers $h(x|\theta_1), h(x|\theta_2), \ldots, h(x|\theta_k)$. Each member of the family, $h(x|\theta_i)$, is a classification tree and k is the number of trees chosen from a model random vector.
Also, each θ_k is a randomly chosen parameter vector. If $D(x, y)$ denotes the training dataset, each classification tree in the ensemble is built using a different subset $D_{\theta_k}(x, y) \subset D(x, y)$ of the training dataset. Thus, $h(x|\theta_k)$ is the k^{th} classification tree which uses a subset of features $x_{\theta_k} \subset x$ to build a classification model. Each tree then works like regular decision trees: it partitions the data based on the value of a particular feature (which is selected randomly from the subset), until the data is fully partitioned, or the maximum allowed depth is reached.

The final output y is obtained by aggregating the results thus:

$$y = \arg\max_{p \in \{h(x_1), \ldots, h(x_k)\}} \left\{ \sum_{j=1}^{k} I(h(x|\theta_j) = p) \right\}$$

where I denotes the indicator function.

C. Support Vector Machines

We used Support Vector Machines for binary classification in the latter part of the project, where we worked on the classification problems with collapsed categories. We ran SVMs using the Gaussian (RBF) kernel to map the original features to a high-dimensional feature space:

$$K(x, z) = \exp \left(-\frac{||x - z||^2}{2\sigma^2} \right)$$

The optimal margin classifier with l_1 regularization was used.

$$\min_{y, w, b, \xi} \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} \xi_i$$

s.t. $y(x^T\phi(x') + b) \geq 1 - \xi_i$

$$\xi_i \geq 0, i = 1 \ldots m$$

D. Gradient Boosted Decision Trees

Gradient Tree Boosting[6] is another popular ensemble method used for regression and classification. Given a training sample (x, y), the goal is to find a function $F^*(x)$ that maps x to y such that the expected value of some loss function $\Psi(y, F(x))$ is minimized. Boosting approximates $F^*(x)$ by the following equation:

$$F(x) = \sum_{m=0}^{M} \beta_m h(x; a_m)$$

where the functions $h(x; a_m)$ (called “base learners”) are simple functions of x with parameters a. Starting with $F_0(x)$, the parameters β_m and a_m are found in a “stage-wise” manner and the function $F_m(x)$ is updated as:

$$F_m(x) = F_{m-1}(x) + \beta_m h(x; a_m)$$

In tree boosting, the base learner $h(x; a)$ is an L-terminal node regression tree. At each iteration m, a regression tree partitions the x-space into L-disjoint regions $\{R_{lm}\}_{l=1}^L$ and predicts a separate constant value in each one. The update rules for calculating $F_m(x)$ given $F_{m-1}(x)$ are as follows:

$$\bar{y}_{lm} = \frac{d\Psi(y_i, F(x_i))}{dF(x_i)}_{F(x) = F_{m-1}(x)}$$

$$\bar{y}_{lm} = \text{mean}_{x_i \in R_{lm}}(\bar{y}_{lm})$$

$$h(x; \{R_{lm}\}_{l=1}^L) = \sum_{l=1}^{L} \bar{y}_{lm} 1(x \in R_{lm})$$

$$\gamma_{lm} = \arg\min_{\gamma} \sum_{x_i \in R_{lm}} \Psi(y_i, F_{m-1}(x_i) + \gamma)$$

$$F_m(x) = F_{m-1}(x) + \nu \gamma_{lm} 1(x \in R_{lm})$$

V. EXPERIMENTAL RESULTS

In this section, we detail the results of running the classifiers we described in the previous section on our data, on both the full dataset, and on collapsed categories.

A. Performance on our Original Dataset

With our original dataset, we ran two different learning algorithms, i.e., Naive Bayes and Random Forests classifiers, to get an initial understanding of the quality of our feature set, and the amount of predictability in the data.

The Naive Bayes Model was tested using cross validation, i.e., 70 percent of the data was used for training and the rest for testing purposes. We got the following results:

- The classifier gave 30% accuracy on the training set and 25% accuracy on the cross validation set. Hence, both training and cross validation error were very high.
- The above trend was observed even on varying the size of the training set. The accuracy did not go above 30%, even on the training set. Note that this is still significantly better than random guessing, since we have not 2, but 39, output classes.

We also implemented Random Forests for our classification problem. This was done keeping in mind that most machine learning algorithms work with numerical features and that our features are almost all categorical in nature. The Random Forests classifier works well with categorical features and does not need any preprocessing. We got the following results:

- After building the model, we ran it on the training set itself to get a training error of 5%, which initially looked too good to be true.
- However, on performing cross validation on the training data using 10 folds, we got a test error of 84%, which was huge compared to our training error, indicating high variance.

B. Performance on Collapsed Classes:

After the feature enriching process detailed above, where we augmented our training data with data from the Census, we ran 3 different algorithms on two separate classifications of the data. We split our crime categories into Blue Collar/White Collar Crimes in one case and Violent/Non-Violent Crimes in the other. Since blue-collar crimes far outnumbered white-collar crimes, and non-violent crimes far exceeded violent crimes, we decided to duplicate the minority class while training our classifier. This penalized the classifier more for mislabeling a training example in the minority class, than random guessing, since we have not 2, but 39, output classes.

We augmented our training data with data from the Census. Thus, $\gamma_{lm} = \arg\min_{\gamma} \sum \Psi(y_i, F_{m-1}(x_i) + \gamma)$

We got the following results:

- After building the model, we ran it on the training set itself to get a training error of 5%, which initially looked too good to be true.
- However, on performing cross validation on the training data using 10 folds, we got a test error of 84%, which was huge compared to our training error, indicating high variance.

Random Forests:

For random forests algorithms, the parameters to tune are the number of trees and the maximum depth of each tree. In order
to pick optimum values for these, we tested the algorithm on the data for different combinations of the parameters. Finally, we picked the set of parameters that gave not only the overall highest accuracy but also the highest precision and recall values for both crime classes. The graphs below show the variation of accuracy, precision and recall values for parameter values for Blue/White Crime classification. From this, the maximum accuracy obtained was **79.18%** for number of trees = **200** and maximum depth = **15**. Thus, random forests worked fairly well on this problem, especially for blue collar crimes.

TABLE III: Precision and recall for random forests on Blue Collar/White Collar crime classification

<table>
<thead>
<tr>
<th>Precision_Blue</th>
<th>Precision_White</th>
<th>Recall_Blue</th>
<th>Recall_White</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.869700021</td>
<td>0.163540533</td>
<td>0.741358669</td>
<td>0.312845342</td>
</tr>
</tbody>
</table>

The graphs below show the variation of accuracy, precision and recall values for parameter values for Violent/Non-Violent Crime classification. From this, the maximum accuracy obtained was **61.75%** for number of trees = **200** and maximum depth = **15**.

TABLE IV: Precision and recall for random forests on Violent/Non-Violent crime classification

<table>
<thead>
<tr>
<th>Precision_Violent</th>
<th>Recall_Violent</th>
<th>Precision_Non_Violent</th>
<th>Recall_Non_Violent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.589660627</td>
<td>0.963603527</td>
<td>0.362965695</td>
<td>0.804631244</td>
</tr>
</tbody>
</table>

Gradient Boosted Decision Trees:
For the gradient boosted trees algorithm, the parameters of interest are the number of trees and the maximum depth of each tree. Once again, we tested the algorithm on the data for different permutations of the parameters. Finally, we picked the set of parameters that gave not only the overall highest accuracy but also the highest precision and recall values for both crime classes for Blue/White Crime classification. The graphs below show the variation of accuracy, precision and recall values for parameter values. From this, the maximum accuracy obtained was **96.3%** for number of estimators = **200** and maximum depth = **13**.

TABLE V: Precision and recall for gradient boosted trees on Blue Collar/White Collar crime classification

<table>
<thead>
<tr>
<th>Precision_Blue</th>
<th>Precision_White</th>
<th>Recall_Blue</th>
<th>Recall_White</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.963603527</td>
<td>0.971364318</td>
<td>0.743345571</td>
<td>0.799785378</td>
</tr>
</tbody>
</table>

The graphs below show the variation of accuracy, precision and recall values for various configurations of parameter values for Violent/Non-Violent Crime classification. From this, the maximum accuracy obtained was **75.02%** for number of estimators = **200** and maximum depth = **11**.

TABLE VI: Precision and recall for gradient boosted trees on Violent/Non-Violent crime classification

<table>
<thead>
<tr>
<th>Precision_Violent</th>
<th>Recall_Violent</th>
<th>Precision_Non_Violent</th>
<th>Recall_Non_Violent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.804631244</td>
<td>0.899938198</td>
<td>0.362965695</td>
<td>0.206925557</td>
</tr>
</tbody>
</table>

Support Vector Machines:
We used Support Vector Machine classifier with an “RBF” kernel as our final algorithm. The two parameters of interest for the classifier are the c and γ values. Once again, we tested the algorithm on the data for different permutations of the parameters and we picked the set of parameters that gave the highest accuracy. The graphs below show the variation of accuracy, precision and recall values for parameter values for Blue/White Crime Classification. From this, the maximum accuracy obtained was **96%** for $c = 4$ and $\gamma = 0.2$.

The graphs below show the variation of accuracy, precision and recall values for parameter values for Violent/Non-Violent Crime classification. From this, the maximum accuracy obtained was **62.80%** for $c = 1.1$ and $\gamma = 0.01$.
TABLE VII: Precision and recall for SVMs on Blue Collar/White Collar crime classification

<table>
<thead>
<tr>
<th></th>
<th>Precision_Blue</th>
<th>Precision_White</th>
<th>Recall_Blue</th>
<th>Recall_White</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9602589</td>
<td>0.998788205</td>
<td>0.988629185</td>
<td>0.718219367</td>
</tr>
</tbody>
</table>

TABLE VIII: Precision and recall for SVMs on Violent/Non-Violent crime classification

<table>
<thead>
<tr>
<th></th>
<th>Precision_Violent</th>
<th>Recall_Violent</th>
<th>Precision_Non_Violent</th>
<th>Recall_Non_Violent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.825943997</td>
<td>0.668314728</td>
<td>0.285785578</td>
<td>0.481704753</td>
</tr>
</tbody>
</table>

C. Feature selection

More important than just our accuracy and precision is the interpretation of our model: which of our features actually help predict the category of crime? Analyzing the feature importances of our model gave us interesting insights. The following are the most relevant features used by our SVM (which we identified by running forward search) for classification, for the case of Blue Collar/White Collar Crimes: Hour, Minority Population, Day Of Week, Tract Income Level, Tract Code, Police District Number, Tract Population, Day of Month.

VI. CONCLUSION AND FUTURE WORK

The initial problem of classifying 39 different crime categories was a challenging multi-class classification problem, and there was not enough predictability in our initial data-set to obtain very high accuracy on it. We found that a more meaningful approach was to collapse the crime categories into fewer, larger groups, in order to find structure in the data. We got high accuracy and precision on the blue-collar/white-collar crime classification problem using Gradient Boosted trees and Support Vector Machines (the former famously robust and the latter well-suited to a 2-class classification problem, especially with an RBF Kernel that can translate the data to a high-dimensional space where it is linearly separable). However, the Violent/Non-violent crime classification did not yield remarkable results with the same classifiers – this was a significantly harder classification problem. Thus, collapsing crime categories is not an obvious task and requires careful choice and consideration.

Possible avenues through which to extend this work include time-series modeling of the data to understand temporal correlations in it, which can then be used to predict surges in different categories of crime. It would also be interesting to explore relationships between surges in different categories of crimes – for example, it could be the case that two or more classes of crimes surge and sink together, which would be an interesting relationship to uncover. Other areas to work on include implementing a more accurate multi-class classifier, and exploring better ways to visualize our results.

ACKNOWLEDGMENTS

We would like to thank our project TA Youssef Ahrez for his thoughtful feedback and helpful ideas at every stage of our project. We also owe a debt of gratitude to Viswajith Venugopal, a student of the Department of Computer Science, for helping us to understand and implement parallel computing. And of course, our acknowledgements section would be incomplete without a mention of Professor Andrew Ng, whose excellent class enabled us to do this project in the first place.

REFERENCES